
3/18/2021

1

ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Authoring an
initial-value problem solver

Introduction

• In this topic, we will

– Look at the weaknesses of our implementations

– Consider how to reduce the work for the user

– Discuss how to use classes to provide better user
interfaces

Authoring an initial-value problem solver

2

1

2

3/18/2021

2

Review of our IVP solvers

• The solvers we have implemented so far are classic procedural
functions

– They all return multiple arrays

– The Matlab IVP solver routine ode45(…) is similar

– The Maple dsolve(…) routine,
however, returns a callable function

• All the user wants, however, is to evaluate the solution at various
points

– Passing back arrays requires the user to perform the
interpolation or spline calculations

Authoring an initial-value problem solver

3

A better approach

• Solution:

– Create a class, where each instance is a solver for a particular
initial-value problem

• The description of the IVP is passed to the constructor

– The class has one public member operator:
double operator()(double t)

vector operator()(double t)

Authoring an initial-value problem solver

4

3

4

3/18/2021

3

A better approach

• All other data is kept internal inside the instance of the class

– This includes the t-values and the approximations of the values
and derivatives

• Question: How do we know how far to approximate to?

– We don’t, and we don’t care, either

– The user will create an instance:
int main() {

ivp y{ f, 0.0, 1.0,
std::make_pair(0.0001, 0.01), 1e-4 };

for (unsigned int k{0}; k <= 1000; ++k) {

std::cout << y(0.01*k) << std::endl;

}

return 0;

}

Authoring an initial-value problem solver

5

A better approach

• Do we make the calculation each time?

– No

• Strategy:

– Store the t-values and approximations in a std::vector
member variable

– If the user asks for an approximation at a specific t,
check if lies between two approximations

• If no, keep approximating from the last approximated t-value
until you pass the requested time t

– Any newly calculated approximations are appended to the
std::vector member variable

Authoring an initial-value problem solver

6

5

6

3/18/2021

4

Issue with naming…

• The standard template library class equivalent to an array on
steroids is unfortunately called std::vector

– This was an acknowledged mistake on the part of the designer
of the STL, Alex Stepanov

• Issues:

– You cannot perform vector addition, nor can you perform scalar
multiplication

– std::vector are variable in size: you can resize a std::vector

• Just remember: The std::vector class has absolutely nothing to
do with vectors from linear algebra

Authoring an initial-value problem solver

7

A better approach

• Internally, we proceed as follows:

Authoring an initial-value problem solver

8

y0

t0

7

8

3/18/2021

5

A better approach

• Thus, the user need know nothing about how these
computations are being made

– The user would look at the description and see if the package is

appropriate in the state provided

Authoring an initial-value problem solver

9

A better approach

• Consequently, the user can simply do:
int main() {

ivp y{ f, 0.0, 1.0,
std::make_pair(0.0001, 0.01), 1e-4 };

for (unsigned int k{0}; k <= 1000; ++k) {

std::cout << y(0.01*k) << std::endl;

}

return 0;

}

– Essentially all these values will be spline results

• The user doesn’t care

Authoring an initial-value problem solver

10

9

10

3/18/2021

6

Pseudo-code

double ivp::operator()(double t) {

if (…) {

// If we have already approximated the solution up to or

// beyond t, find the approximations on either side of t

// in the std::vector and return the cubic spline at t

} else {

// Create a queue to store new approximations

// Use the Dormand-Prince method to continue

// approximating new t values and appending these

// new approximations onto the queue, until

// we have approximated a point at or beyond t

// Expand the std::vector, and move the data from the

// queue to the std::vector

// Use a cubic spline at t

}

}

Authoring an initial-value problem solver

11

Summary

• Following this topic, you now

– Understand how to make interfaces more user friendly

– Are aware of the ivp class and how it would be implemented

Authoring an initial-value problem solver

12

11

12

3/18/2021

7

References

[1] https://en.wikipedia.org/wiki/Dormand-Prince_method

[3] https://en.wikipedia.org/wiki/Adaptive_algorithm

[4] https://en.wikipedia.org/wiki/Adaptive_step_size

Authoring an initial-value problem solver

13

Acknowledgments

None so far.

Authoring an initial-value problem solver

14

13

14

3/18/2021

8

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Authoring an initial-value problem solver

15

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Authoring an initial-value problem solver

16

15

16

